About the theory: Multiple Memory Music Learning (MMML)
Multiple Memory Music Learning (MMML) is a framework that brings together the memory and cognition model, Multiple Memory Systems (MMS), and music learning.
Musicians perform numerous tasks at once, recruiting different areas of the brain to do so. How is that the case, when it is now commonly understood that multitasking is an impossibility (Madore & Wagner, 2019; Powell, 2016)?
While the research is nascent, there exists at least a proof-of-concept that potentially, playing a musical instrument allows for a fairly quick adaptation to the implicit memory system, thus freeing up the explicit memory system to perform decision-making tasks while carrying out physical music performance.
There are two crucial aspects with this. First of all, the notion that the implicit memory systems can learn quickly to the point of automaticity in physical performance is in opposition to the commonly-held view that automaticity takes a significant amount of practice - many thousands of hours.
Secondly, automaticity is not necessarily a good thing. For anyone who has learnt and/or is teaching music, you would have likely encountered the phenomenon of mistakes being made on a first run-through of music… only for the exact same mistake to happen again later, even after you have worked on it for some time (or your student).
Data from a grounded theory study involving beginner instrumental music students (aged 12-13) showed the following associations in relation to MMS:
MULTIPLE MEMORY MUSIC LEARNING:
MAIN THEMES
Automatic Music Learning
The phenomenon of short-term automaticity in instrumental music learning.
Contextual Music Learning
How various learning behaviors manifest in different learning environments
Music Learning Sequencing and Attentional Behaviors
The association between attentional behaviors and sequencing of learning events in instrumental music learning.
The Study
International Society of Music Educators (ISME) Preconference Presentation, Espoo, Finland, 2024
References
Altenmüller, E., Baur, V., Hofmann, A., Kim, V. K., & Jabusch, H-C. (2012). Musician’s cramp as manifestation of maladaptive brain plasticity: Arguments from instrumental differences. Annals of the New York Academy of Sciences, 1252(2012), 259-265. https://doi.org/10.1111/j.1749-6632.2012.06456.x
Amunts, K., Mohlberg, H., Bludau, S., & Zilles, K. (2020). Julich-Brain: A 3D probabilistic atlas of the human brain’s cytoarchitecture. Science, 369(6506), 988–992. DOI: 10.1126/science.abb4588
Anderson, S., Himonides, E., Wise, K., Welch, G., & Stewart, L. (2012). Is there potential for learning in amusia? A study of the effect of singing intervention in congenital amusia. Annals of the New York Academy of Sciences, 1252(2012), 345-353. https://doi.org/10.1111/j.1749-6632.2011.06404.x
Antonucci, S. M., & Reilly, J. (2008). Semantic memory and language processing: A primer. Seminars in Speech and Language, 17(1), 5-17. https://doi.org./10.1055/s-2008-1061621
Appelbaum, S. H., Marchionni, A., & Fernandez, A. (2008). The multi-tasking paradox: perceptions, problems and strategies. Management Decision, 46(9), 1313–1325. https://doi.org/10.1108/00251740810911966
Ashby, F. G. (2013). The neurobiology of perceptual categorization: From learning to automaticity [lecture]. UCI Media. https://youtu.be/u_hj9GLajEw?si=hHB6JDxZS6XQf701
Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442-481
Ashby, F. G., & Crossley, M. J. (2010). Interactions between declarative and procedural-learning categorization systems. Neurobiology of Learning and Memory, 94, 1-12. http://dx.doi.org/10.1016/j.nlm.2010.03.001
Ashby, F. G., & Crossley, M. J. (2012). Automaticity and multiple memory systems. WIREs Cognitive Science, 3(3), 363-376. https://doi.org/10.1002/wcs.1172
Ashby, F. G., & Ell, S. W. (2001). The neurobiology of human category learning. Trends in Cognitive Sciences, 5, 204-210. https://doi.org/ 10.1016/s1364-6613(00)01624-7
Ashby, F. G., & Ell, S. (2002a). Single versus multiple systems of category learning: Reply to Nosofsky and Kruschke (2002). Psychonomic Bulletin & Review, 9(1), 175–180. https://doi.org/10.3758/BF03196275
Ashby, F. G., & Ell, S. (2002b). Single versus multiple systems of category learning. In J. Wixted & H. Pashler (Eds.), Steven’s handbook of experimental psychology: Vol. 4. Methodology in experimental psychology. (3rd ed., pp. 655-692). New York: Wiley.
Ashby, F. G., Ell, S. W., & Waldron, E. M. (2003). Procedural learning in perceptual categorization. Memory & Cognition, 31(7), 1114-1125. https://doi.org/10.3758/BF03196132
Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annual Review of Psychology, 56, 149-178. https://doi.org/10.1146/annurev.psych.56.091103.070217
Ashby, F. G., & O’Brien, J. B. (2005). Category learning and multiple memory systems. Trends in Cognitive Sciences, 9(2), 83-89. https://doi.org/10.1016/j.tics.2004.12.003
Atkinson, R. C., and Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence and J. T. Spence (Eds.), The Psychology of Learning and Motivation, (pp. 89–195). Academic Press
Australian Bureau of Statistics. (n.d.). https://www.abs.gov.au/
Australian Bureau of Statistics. (2021). Socio-Economic Indexes for Areas (SEIFA), Australia. https://www.abs.gov.au/statistics/people/people-and-communities/socio-economic-indexes-areas-seifa-australia/2021
Australian Music Education Board. (n.d.). https://ameb.edu.au
Baddeley, A. D. (1986). Working memory. Oxford University Press.
Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.) Psychology of learning and motivation, Vol. 8 (pp. 47-89). Academic press. https://doi.org/10.1016/S0079-7421(08)60452-1.
Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417-423. https://doi.org/10.1016/S1364-6613(00)01538-2
Baddeley, A. (2007). Working memory, thought, and action. Oxford University Press. https://doi-org.ezproxy.bu.edu/10.1093/acprof:oso/9780198528012.001.0001
Badets, A., Koch, I. & Toussaint, L. (2013). Role of an ideomotor mechanism in number processing. Experimental Psychology, 60(1), 34–43. https://doi.org/10.1027/1618-3169/a000171
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215. https://psycnet.apa.org/doi/10.1037/0033-295X.84.2.191
Bandura, A. (1989). Regulation of cognitive processes through perceived self-efficacy. Developmental Psychology, 25(5), 729-735. https://psycnet.apa.org/doi/10.1037/0012-1649.25.5.729
Bandura, A. (1997). Self-efficacy: The exercise of control. W H Freeman/Times Books/ Henry Holt & Co.
Bandura, A. (2012). On the functional properties of perceived self-efficacy revisited. Journal of Management, 38(1), 9-44. https://doi.org/10.1177/0149206311410606
Bangert, Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., Heinze, H.-J., & Altenmüller, E. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage (Orlando, Fla.), 30(3), 917–926. https://doi.org/10.1016/j.neuroimage.2005.10.044
Bannert, M. (2002). Managing cognitive load: Recent trends in cognitive load theory. Learning and Instruction, 12, 139-146. https://doi.org/10.1016/S0959-4752(01)00021-4
Bechtel, W., & Richardson, R. C. (2010). Neuroimaging as a tool for functionally decomposing cognitive processes. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 241-261). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullen, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8(9), 1148-1150. https://doi.org/10.1038/nn1516
Bengtsson, S. L., & Ullen, F. (2006). Dissociation between melodic and rhythmic processing during piano performance from musical scores. Neuroimage, 30(1), 272-284. https://doi.org/10.1016/j.neuroimage.2005.09.019
Bergman Nutley, S., Darki, F., & Klingberg, T. (2014). Music practice is associated with development of working memory during childhood and adolescence. Frontiers in Human Neuroscience, 7, 926. https://doi.org/10.3389/fnhum.2013.00926
Bermudez, P., & Zatorre, R. J. (2005a). Conditional associative memory for musical stimuli in nonmusicians: Implications for absolute pitch. The Journal of Neuroscience, 25(34), 7718-7723. https://doi.org/10.1523/JNEUROSCI.1560-05.2005
Bermudez, & Zatorre, R. J. (2005b). Differences in Gray Matter between Musicians and Nonmusicians. Annals of the New York Academy of Sciences, 1060(1), 395–399. https://doi.org/10.1196/annals.1360.057
Bertleff, A. J. (2022). Automaticity in musicians as demonstrated by a modified STROOP task [Doctoral dissertation, Kent State University]. http://rave.ohiolink.edu/setdc/view?acc_num=kent1657609795664489
Bidelman, G. M., Hutka, S., & Moreno, S. (2013). Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: Evidence for bidirectionality between the domains of language and music. PLoS One, 8(4), e60676. https://doi.org/10.1371/journal.pone.0060676
Bigand, E., McAdams, S., & Forêt, S. (2000). Divided attention in music. International Journal of Psychology, 35(6), 270-278. https://doi.org/10.1080/002075900750047987
Biswall, B. (2010). Resting-state brain connectivity. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 135-145). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Blaxton, T. A. (1989). Investigating dissociations among memory measures: Support for a transfer-appropriate processing framework. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(4), 657–668. https://doi.org/10.1037/0278-7393.15.4.657
Bluestine, E. (2000). The ways children learn music. GIA Publications, Inc. Chicago.
Brown, R. M., & Palmer, C. (2012). Auditory-motor learning influences auditory memory for music. Memory & Cognition, 40(4), 567-578. https://doi.org/10.3758/s13421-011-0177-x
Bryant, A., & Charmaz, K. (2007). The SAGE handbook of grounded theory. SAGE Publications Ltd., https://doi.org/10.4135/9781848607941
Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13, 336-349. https://doi.org/10.1038/nrn3214
Bunzl, M., Hanson, S. J., & Poldrack, R. A. (2010). An exchange about localism. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 49-54). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Burton, H. (2020). Mindsets: Growing your brain: A conversation with Carol Dweck. Open Agenda Publishing.
Burunat, I., Allura, V., Toiviainen, P., Numminen, J., & Brattico, E. (2014). Dynamics of brain activity underlying working memory for music in a naturalistic condition. Science Direct, 57(1), 254-269. http://doi.org/10.1016/j.cortex.2014.04.012
Cabeza, R., & Moscovitch, M. (2013). Memory systems, processing modes, and components: Functional neuroimaging evidence. Perspectives on Psychological Science, 8(1), 49-55. https://doi.org/10.1177/1745691612469033
Cantwell, G., Crossley, M. J., & Ashby, F. G. (2015). Multiple stages of learning in perceptual categorization: Evidence and neurocomputational theory. Psychonomic Bulletin & Review. 1598-1613. https://doi.org/10.3758/s13423-015-0827-2
Charmaz, K. (2014). Constructing grounded theory (2nd ed.). SAGE Publications.
Cohen, N. J., & Squire, L. R. (1980). Preserved learning and retention of pattern-analyzing skill in amnesia: Dissociation of knowing how and knowing that. Science, 210(4466), 207-210. https://doi.org/ 10.1126/science.7414331
Cohen, Y. E., Popper, A. N., Fay, R. R. (2013). Neural correlates of auditory cognition. Springer Publishing.
Colley, I. D., Keller, P. E., & Halpern, A. R. (2018). Working memory and auditory imagery predict sensorimotor synchronisation with expressively timed music. Quarterly Journal of Experimental Psychology, 71(8), 1781-1796. https://doi.org/10/1080/17470218.2017.1366531
Coltheart, M. (2010). What is functional neuroimaging for? In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 263-272). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Cooper, P. K. (2020). It’s all in your head: A meta-analysis on the effects of music training on cognitive measures in schoolchildren. International Society for Music Education, 38(3), 321-336. https://doi.org/10/1177/0255761419881495
Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative Sociology, 13(3), 3–21. https://doi.org/10.1007/BF00988593
Corrigall, K. A., & Schellenberg, G. E. (2016). Music cognition in childhood. In G. E. McPherson (Ed.), The child as musician: A handbook of musical development (2nd ed., pp. 81-101). Oxford University Press.
Crab, B. T., & Dark, V. J. (1999). Perceptual implicit memory requires attentional encoding. Memory & Cognition, 27(2), 267-275. https://doi.org/10.3758/bf03211411
Croonen, W. L. M., & Kop, P. F. M. (1989). Tonality, tonal scheme, and contour in delayed recognition of tone sequences. Music Perception: An Interdisciplinary Journal, 7(1), 49-67. https://doi.org/10.2307/40285448
Crossley, M. J., Roeder, J. L., Helie, S., Ashby, F. G. (2016). Trial-by-trial switching between procedural and declarative categorization systems. Psychological Research, 82, 371-384. https://doi.org/10.1007/s00426-016-0828-4
Crotty, M. (1998). The foundations of social research. Sage Publications.
Csikszentmihalyi, M. & Csikszentmihalyi, I. S. (1988). Optimal experience: Psychological studies of flow in consciousness. Cambridge University Press.
Csikszentmihalyi, M. (1997). Finding Flow. Basic Books
Demany, L., & Semal, C. (2008) The role of memory in auditory perception. In W. A. Yost, A. N Popper, and R. R. Fay (Eds.), Springer Handbook of Auditory Research (pp. 77-115), Springer.
Demorest, S., Morrison, S., Jungbluth, D., & Beken, M. (2008). Lost in translation: An enculturation effect in music memory performance. Music Perception: An Interdisciplinary Journal, 25(3), 213-223. https://doi.org/10.1525/mp.2008.25.3.213
Derry, J. (2020). A problem for cognitive load theory: The distinctively human life‐form. Journal of Philosophy of Education, 54(1), 5–22. https://doi.org/10.1111/1467-9752.12411
Dickerson, B. C., & Eichenbaum, H. (2009). The episodic memory system: Neurocircuitry and disorders. Neuropsychopharmacology, 35(1), 86-104. https://doi.org/10.1038/npp.2009.126s
Di Pietro, M., Laganaro, M., Leemann, B., & Schnider, A. (2004). Receptive amusia: temporal auditory processing deficit in a professional musician following a left temporoparietal lesion. Neuropsychologia, 42(7), 868-877. https://doi.org/10.1016/j.neuropsychologia.2003.12.004
Dowling, W. J. (1978). Scale and contour: Two components of a theory of memory for melodies. Psychological Review, 85(4), 341-354. https://doi.org/10.1037/0033-295X.85.4.341
Dunne, C. (2011). The place of the literature review in grounded theory research. International Journal of Social Research Methodology, 14(2), 111-1204. https://doi.org/10.1080/13645579.2010.494930
Durisko, C., & Fiez, J. A. (2010). Functional activiation in the cerebellum during working memory and simple speech tasks. Cortex, 46, 896-906. https://doi.org/10.1016/j.cortex.2009.09.009
Dweck, C. (2006). Mindset: the new psychology of success (1st ed). Random House.
Dweck, C. (2007). The perils and promises of praise. Educational Leadership, 65(2), 34-39. https://www.semanticscholar.org/paper/The-Perils-and-Promises-of-Praise-Dweck/abb07a24c933c18c1a8e1b390be6867533fa5f6b
Dweck, C. (2017). From needs to goals and representations: Foundations for a unified theory of motivation, personality, and development. Psychological Review, 124(6), 689-719. http://dx.doi.org/10.1037/rev0000082
Dworkin, S. L. (2012). Sample size policy for qualitative studies using in-depth interviews. Archives of Sexual Behavior, 41, 1319-1320. https://doi.org/10.1007/s10508-012-0016-6
Edwards, R. D., & Hodges, D. A. (2008). Neuromusical research: An overview of the literature. In W. Gruhn and F. Rauscher (Eds.), Neurosciences in Music Pedagogy (pp. 1-25). Nova Science Publishers.
Eichenbaum, H., & Cohen, N. J. (2001). From conditioning to conscious recollection: Memory systems of the brain. New York: Oxford University Press.
Erickson, M. A., & Kruschke, J. K. (1998). Rules and exemplars in category learning. Journal of Experimental Psychology: General, 127(2), 107-140.
Ericsson, K. A. (2008). Deliberate practice and acquisition of expert performance: A general overview. Society for Academic Emergency Medicine, 15, 988-994. https://doi.org/10.1111/j.1553-2712.2008.00227.x
Evans, P., McPherson, G. E., & Davidson, J. W. (2012). The role of psychological needs in ceasing music and music learning activities. Psychology of Music, 41(5). 600-619. http://doi.org/10.1177/0305735612441736
Eysenck, M. W., & Brysbaert, M. (2018). Fundamentals of cognition (3rd ed.). Routledge.
Ferbinteanu, J. (2018). Memory systems 2018: Towards a new paradigm. Neurobiology of Learning and Memory, 157, 61-78. https://doi.org/10.1016/j.nlm.2018.11.005
Fiveash, A., & Pammer, K. (2014). Music and language: Do they draw on similar syntactic working memory resources? Psychology of Music, 42(2), 190-209. https://doi.org/10.1177/0305735612463949
Folkerts, S., Rutishauser, U., Howard, M. W. (2018). Human episodic memory retrieval is accompanied by a neural contiguity effect. Journal of Neuroscience, 38(17), 4200-4211. https://doi.org/10.1523/JNEUROSCI.2312-17.2018
Friston, K. J., Rotshein, P., Geng, J. J., Sterzer, P., & Henson, R. N. (2010). A critique of functional localizers. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 3-24). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Friston, K. J., & Henson, R. N. (2010). Commentary on divide and conquer: A defense of functional localizers. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 43-48). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Frith, U., Blackmore, S. J. (2006). Social cognition. In R. Morris, L. Tarassenko, & M. Kenward (Eds.), Cognitive Systems – Information Processing Meets Brain Science, (pp. 138-162).
Gamin, R. M. (2005). Teacher perceptions regarding attrition in beginning instrumental music classes during the first year of study. Contributions to Music Education, 32(2), 43-64. https://www.jstor.org/stable/24127153
Gardner, H. E. (1983). Frames of mind: The theory of multiple intelligences. Basic Books.
Gardner, H. E. (2011). Frames of mind: The theory of multiple intelligences (2nd ed.). Basic Books.
Gardner, H. E. (2017). Taking a multiple intelligences (MI) perspective. Behavioral and Brain Sciences, 40, https://doi.org/10.1017/S0140525X16001631
Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23(27), 9240-9245. https://doi.org/10.1523/JNEUROSCI.23-27-09240.2003
George, E. M., & Coch, D. (2011). Music training and working memory: An ERP study. Neuropsychologia 49(5), 1083-1094. https://doi.org/10.1016/j.neuropsychologia.2011.02.001
Gillund, G. (2012). Episodic memory. In V.S. Ramachandran (Ed.), Encyclopedia of Human Behavior (2nd ed.), Academic Press. https://doi.org/10.1016/B978-0-12-375000-6.00152-X.
Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory. Aldine Transaction (Transaction Publishers).
Glaser, B. G. (2001). The grounded theory perspective: Conceptualization contrasted with description. Sociology Press.
Glaser, B. G. (2016). Open coding descriptions. The Grounded Theory Review, 15(2), 108-111. https://api.semanticscholar.org/CorpusID:149583839
Glesne, C. (2015). Becoming qualitative researchers: An introduction (2nd ed.). Pearson Education Inc.
Gold, P. E. (2004). Coordination of multiple memory systems. Neurology of Learning and Memory, 82(2004), 230-242. https://doi.org/10.1016/j.nlm.2004.07.003
Goldman-Rakic, P. S. (1996). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 351(1346), 1445-1453. https://doi.org/ 10.1098/rstb.1996.0129
Gordon, E. E. (1999). All about audiation and music aptitudes. Music Educators Journal, 86(2), 41–44. https://doi.org/10.2307/3399589
Grill-Spector, K. (2010). Advancements in fMRI methods: What can they inform about the functional organization of the human ventral stream? In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 161-172). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Groff, J. (2013). Expanding our “Frames” of mind for education and the arts. Harvard Educational Review, 83(1). https://doi.org/10.17763/haer.83.1.kk34802147665819
Gromko, J., & Hayward, C. (2009). Relationships among music sight-reading and technical proficiency, spatial visualization, and aural discrimination. Journal of Research in Music Education, 57(1), 26-36. https://doi.org/10.1177/0022429409332677.
Grossman, M., Smith, E. E., Koenig, P., Glosser, G. DeVita, C., Moore, P., & McMillan, C. (2002). The neural basis for categorization in semantic memory. NeuroImage, 17, 1549-1561. https://doi.org/10.1006/nimg.2002.1273
Haggard, Patrick, Yves Rossetti, and Mitsuo Kawato, Sensorimotor Foundations of Higher Cognition, Oxford. https://doi.org.ezproxy.bu.edu/10.1093/acprof:oso/9780199231447.001.0001, accessed 12 June 2024.
Hallam, S. (1998). The predictors of achievement and dropout in instrumental tuition. Psychology of Music, 26(2), 116-132. https://ezproxy.bu.edu/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fscholarly-journals%2Fpredictors-achievement-dropout-instrumental%2Fdocview%2F1340852%2Fse-2%3Faccountid%3D9676
Hallam, S., Rinta, T., Varvarigou, M., & Creech, A. (2012). The development of practicing strategies in young people. Psychology of Music, 40(5), 652-680, https://doi.org/10.1177/0305735612443868
Hallam, S., & Bautista, A. (2012). Processes of instrumental learning: The development of musical expertise. In G. E. McPherson and G. F. Welch (Eds.), The Oxford handbook of music education, Volume 1. Oxford University Press.
Hallam, S. (2014). Automaticity. In W. F. Thompson (Ed.), Music in the social and behavioral sciences: An encyclopedia. Sage Publications
Hallam, S. (2018). Commentary: Instrumental music. In G. E. McPherson and G. F. Welch (Eds.), The Oxford handbook of music education, Volume 3. Oxford University Press.
Halpern, A. R. (2015). Differences in auditory imagery self-report predict neural and behavioral outcomes. American Psychological Association, 25(1), 37-47. http://dx.doi.org/10.1037/pmu0000081
Hanson, S. J., & Bunzl, M. (2010). Introduction. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 115-132). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Hanson, S. J., & Glymour, C. (2010). Discovering how brains do things. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 115-132). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Hargreaves, D.J., & Aksentijevic, A. (2011). Music, IQ and the executive function. British Journal of Psychology, 102, 306-308. https://doi.org/10.1111/j.2044-8295.2011.02029.x
Harry, B. B., Margulies, D. S., Falkiewicz, M., & Keller, P. E. (2023). Brain networks for temporal adaptation, anticipation, and sensory-motor integration in rhythmic human behavior. Neuropsychologia, 183, 108524. https://doi.org/10.1016/j.neuropsychologia.2023.108524
Hartwigsen, G., Neef, N. E., Camilleri, J. A., Margulies, D. S., & Eickhoff, S. B. (2019). Functional segregation of the right inferior frontal gyrus: Evidence from coactivation-based parcellation. Cerebral Cortex, 2019(29), 1532-1546. https://doi.org/10.1093/cercor/bhy049
Haxby, J. V. (2010). Multivariate pattern analysis of fMRI data: High-dimensional spaces for neural and cognitive representations. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 55-68). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Harman, G. (2010). Words and pictures in reports of fMRI research. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 113-114). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Heath, K. (2023). Research study invitation. Multiple Memory Systems in Instrumental Music Learning. https://sites.google.com/bu.edu/research-study-invitation/home
Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. Taylor & Francis Group.
Hendricks, K. S. (2016). The sources of self-efficacy: Educational research and implications for music. Update: Applications of Research in Music Education 35(1), 32-38. doi:10.1177/8755123315576535
Hennink, M., & Kaiser, B. N. (2022). Sample sizes for saturation in qualitative research: A systematic review of empirical tests. Social Science and Medicine, 292, 2-10. https://doi.org/10.1016/j.socscimed.2021.114523
Henry, L. (2012). The development of working memory in children. Sage publications. https://doi.org/10.4135/9781446251348
Herbort, O., & Butz, M. V. (2012). Too good to be true? Idemotor theory from a computational perspective. Frontiers in Psychology, 3, Article 494. https://www.frontiersin.org/article/10.3389/fpsyg.2012.00494
Herholz, S. C., Halpern, A. R., & Zatorre, R. J. (2003). Neuronal correlates of perception, imagery, and memory for familiar tunes. Journal of Cognitive Science, 24(6), 1382-1397. https://doi.org/10.1162/jocn_a_00216
Hess, J. (2018). Troubling whiteness: Music education and the “messiness” of equity work. International Journal of Music Education, 36(2), 128-144. Sage Publications. https://doi.org/10.1177/0255761417703781
Hickok, G., Buchsbaum, B., Humphries, C., & Muftuler, T. (2003). Auditory-motor interaction revealed by fMRI: Speech, music, and working memory in area spt. Journal of Cognitive Neuroscience, 15(5), 673-682. . https://doi.org/ 10.1162/089892903322307393
Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K. (1999). Parallel neural networks for learning sequential procedures. Trends in Neuroscience, 22(10), 464-471. https://doi.org/10.1016/S0166-2236(99)01439-3
Hirsh, R. (1974). The hippocampus and contextual retrieval of information from memory: A theory. Behavioral Biology, 12(4), 421–444. http://doi.org/10.1016/S0091-6773(74)92231-7
Ho, Y., Cheung, M., & Chan, A. S. (2003). Music training improves verbal but not visual memory: Cross-sectional and longitudinal explorations in children. Neuropsychology, 17(3), 439-450. https://doi.org/10.1037/0894-4105.17.3.439
Hodges, D.A. (2016). The child musician’s brain. In G. E. McPherson (Ed.), The child as musician: A handbook of musical development, (2nd ed., pp. 52-66). Oxford University Press.
Hodges, D. A., & Gruhn, W. (2018). Implications of neurosciences and brain research for music teaching and learning. In G. E. McPherson & G. F. Welch (Eds.), Music and music education in people’s lives: An Oxford handbook of music education, (2nd ed., Vol. 1, pp. 206-224). Oxford University Press.
Hoffmann, J. (2003). Anticipatory Behavioral Control. In: Butz, M.V., Sigaud, O., Gérard, P. (Eds.) Anticipatory Behavior in Adaptive Learning Systems. Lecture Notes in Computer Science, (pp.44-65). Springer. https://doi.org/10.1007/978-3-540-45002-3_4
Hommel, B. (2015). The theory of event coding (TEC) as embodied-cognition framework. Frontiers in Psychology, 6, 1318. https://doi.org/10.3389/fpsyg./2015.01318
Honing, H. (2012). Without it no music: Beat induction as a fundamental musical trait. Annals of the New York Academy of Sciences: The Neurosciences and Music IV: Learning and Memory, 1252(1), 85-91. https://doi.org/10.1111/j.1749-6632.2011.06402.x
Hund-Georgiadis, & von Cramon, D. (1999). Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Experimental Brain Research, 125(4), 417–425. https://doi.org/10.1007/s002210050698
Hutchinson, B. J., & Turk-Browne, N. B. (2012). Memory-guided attention: Control from multiple memory systems. Trends in Cognitive Sciences, 16(12), 576-579. https://www.doi.org/10.1016/j.tics.2012.10.003
Jacobson, S., Marcus, E. M. (2008). Neuroanatomy for the neuroscientist (1st ed. 2008.). Springer US. https://doi.org/10.1007/978-0-387-70971-0
Jafarpour, A., Lin, J. J., Knight, R. T., & Buffalo, E. A. (2022). Multiple memory systems for efficient temporal order memory. Hippocampus, 33, 1154-1157. https://doi.org/10.1002/hipo.23550
James, W. (1890). The principles of psychology (Vol. 1). New York: Holt.
Janata, P. (2012). Acuity of mental representations of pitch. Annals of the New York Academy of Sciences: The Neurosciences and Music IV: Learning and Memory, 1252(1), 214-221. https://doi.org/10.1111/j.1749-6632.2011.06441.x
Jäncke, L. (2012). The dynamic audio-motor system in pianists. Annals of the New York Academy of Sciences, 1252(1), 246-252. https://doi.org/10.1111/j.1749-6632.2011.06416.x
Johansson, B. (2006). Music and brain plasticity. European Review, 1(14), 49-64. https://doi.org/10.1017/S1062798706000056
Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110, 316–339. http://dx.doi.org/10.1037/0033-295X.110.2.316
Kesner, R. P., Bolland, B. L., & Dakis, M. (1993). Memory for spatial locations, motor responses, and objects: Triple dissociation among the hippocampus, caudate nucleus, and extrastriate visual cortex. Experimental Brain Research, 93, 462-470. https://doi.org/ 10.1007/BF00229361
Kirschner. (2002). Cognitive load theory: Implications of cognitive load theory on the design of learning. Learning and Instruction, 12(1), 1–10. https://doi.org/10.1016/S0959-4752(01)00014-7
Kirschner, P. A., Sweller, J., Kirschner, F., & Zambrano R., J. (2018). From cognitive load theory to collaborative cognitive load theory. International Journal of Computer-Supported Collaborative Learning, 13(2), 213–233. https://doi.org/10.1007/s11412-018-9277-y
Knowlton, B. J., & Squire, L. R. (1993). The learning of categories: Parallel brain systems for item memory and category knowledge. Science, 262(5140), 1747. https://doi.org/10.1126/science.8259522
Koelsch, S., & Siebel, W. A. (2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9(12), 578-584. https://doi.org/10.1016/j.tics.2005.10.001
Koelsch, S. (2011). Towards a neural basis of music perception: A review and updated model. Frontiers in Psychology, Cognitive Sciences, 2, 110. http://www.frontiersin.org/Psychology/editorialboard
Kohlmetz, C., Muller, S. V., Nager, W., Münte, T. F., Altenmüller, E. (2003). Selective loss of timbre perception for keyboard and percussion instruments following a right temporal lesion. Neurocase, 9(1), 86-93. https://doi.org/ https://doi.org/10.1076/neur.9.1.86.14372
Kovacs, P., Hélie, S., Tran, A. N., & Ashby, G. F. (2021). A neurocomputational theory of how rule-guided behaviors become automatic. Psycyhological Review, 128(2), 488-508. https://doi.org/10.1037/rev0000271
Kraus, N., Strait, D., & Parbery-Clark, A. (2012). Cognitive factors shape brain networks for auditory skills: Spotlight on auditory working memory. Annals of the New York Academy of Sciences, 1252(1), 100-107. https://doi.org/10.1111/j.1749-6632.2012.06463.x.
Kuriki, S., Isahai, N., & Ohtsuka, A. (2005). Spatiotemporal characteristics of the neural activities processing consonant/dissonant tones in melody. Experimental Brain Research, 162(1), 46-55. https://doi.org/10.1007/s00221-004-2114-8
Kyonka, E. G. E. (2019). Tutorial: Small-N Power Analysis. Perspectives on Behavioral Sciences, 42(1), 133-152. https://doi.org/10.1007/s40614-018-0167-4
Kraus, N., Strait, D., & Parbery-Clark, A. (2012). Cognitive factors shape brain networks for auditory skills: Spotlight on auditory working memory. Annals of the New York Academy of Sciences, 1252(1), 100-107. https://doi.org/10.1111/j.1749-6632.2012.06463.x.
Larsson, M., Richter, J., & Ravignani, A. (2019). Bipedal steps in the development of rhythmic behaviour in humans. Music & Science, 2. 1-14. https://doi.org/101177/2059204319892617
LaRocque, J. J., Lewis-Peacock, J. A., & Postle, B. R. (2014). Multiple neural states of representation in short-term memory? It’s a matter of attention. Frontiers in Human Neuroscience, 8, Article 5. https://doi.org/ 10.3389/fnhum.2014.00005
LaBerge, D., & Samuels, S. J. (1974). Toward a theory of automatic information processing in reading. Cognitive Psychology, 6(2), 293–323. https://doi.org/10.1016/0010-0285(74)90015-2
Le, X. (2021). Engaging multitasking performance ensembles through world music. Journal of General Music Education, 35(3), 12-17. https://doi.org/10.1177/27527646221092160s
Leaver, A. M., Van Lare, J., Zielinski, B., Halpern, A. R., & Rauschecker, J. P. (2009). Brain activation during anticipation of sound sequences. The Journal of Neuroscience, 29(8), 2477-2485. https://doi.org/10.1523/JNEUROSCI.4921-08.2009
Lee, Chen, Y., & Schlaug, G. (2003). Corpus callosum: musician and gender effects. Neuroreport, 14(2), 205–209. https://doi.org/10.1097/00001756-200302100-00009
Lee, Y., Lu, M., & Ko, H. (2007). Effects of skill training on working memory capacity. Learning and Instruction 17(3), 336-344. https://doi.org/10.1016/j.learninstruc.2007.02.010
LeDoux, J. E., & Doyère, V. (2011). Memory as a constructive process: The parallel distributed processing approach. In S. Nalbantian, P. M. Matthews & J. L. McClelland (Eds.), The memory process: Neuroscientific and humanistic perspectives (pp. 129-151). MIT Press; Cambridge, MA.
Lehmann, A. C., & Jørgensen, H. (2018). Practice. In G. E. McPherson and G. F. Welch (Eds.), The Oxford handbook of music education, Volume 3. Oxford University Press.
Lepper, M., Oehler, M., Kinzler, H., Trancón y Widemann, B. (2019). Diminuendo al bottom: Clarifying the semantics of music notation by re-modeling. PLoS ONE, 14(11), e0224688. https://doi.org/10.1371/journal.pone.0224688
Liégeois-Chauvel, C., Peretz, I., Babaï, M., Laguitton, V., & Chauvel, P. (1998). Contribution of different cortical areas in the temporal lobes to music processing. Brain, 121(10), 1853-1867. https://doi.org/10.1093/brain/121.10.1853
Lin, Z., & Lu, Z-L. (2016). Automaticity of phasic alertness: Evidence for a three-component model of visual cueing. Attention, Perception, & Psychophysics, 78, 1948-1967. https://doi.org/10.3758/s13414-016-1124-5
Lowe, G. (2010). In their voice: Lower secondary school students’ beliefs about playing musical instruments, and the impact of the instrument lesson upon those beliefs. Australian Journal of Music Education, (2), 41-51. https://link-gale-com.ezproxy.bu.edu/apps/doc/A310516881/AONE?u=mlin_b_bumml&sid=bookmark-AONE&xid=d23ec7ab
Loosemore, R., & Harley, T. (2010). Brains and minds: On the usefulness of localization data to cognitive psychology. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 217-240). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Lotto, A. J., & Sullivan, S. C. (2008) Speech as a sound source. In W. A. Yost, A. N Popper, and R. R. Fay (Eds.), Springer Handbook of Auditory Research (pp. 77-115), Springer.
Lotze, R. H. (1852). Medicinische Psychologie oder Physiologie der Seele. Leipzig: Weidmann
Lucas, B. J., Schubert, E., & Halpern, A. R. (2010). Perception of emotion in sounded and imagined music. Music Perception: An Interdisciplinary Journal, 27(5), 399-412. https://doi.org/10.1525/mp.2010.27.5.399
Maddox, W. T., & Ashby, F. G. (2004). Dissociating explicit and procedural-learning based systems of perceptual category learning. Behavioral Processes, 66, 309-332. https://doi.org/10.1016/j.beproc.2004.03.011
Maddox, W. T., Ashby, F. G., & Waldron, E. M. (2002). Multiple attention systems in perceptual categorization. Memory & Cognition, 30(3), 325-339. https://link.springer.com/content/pdf/10.3758/BF03194934.pdf
Maddox, W. T., Bohil, C. J., & Ing, D. A. (2004). Evidence for a procedural-learning-based system in perceptual category learning. Psychonomic Bulletin & Review, 11(5), 945-952. https://doi.org/10.3758/BF03196726
Madore, K. P., & Wagner, A. D. (2019). Multicosts of Multitasking. Cerebrum: The Dana forum on brain science, 2019, 4-19. https://pubmed.ncbi.nlm.nih.gov/32206165/
Mak, H. W., & Fancourt, D. (2021). Do socio-demographic factors predict children’s engagement in arts and culture? Comparisons of in-school and out-of-school participation in the Taking Part Survey. PLOS ONE, 16(2): e0246936. https://doi/org/10.1371/journal.pone.0246936
Mason, M. (2010). Sample size and saturation in PhD studies using qualitative interviews. Forum Qualitative Social Research, 11(3), Art. 8, http://nbn-resolving.de/urn:nbn:de:0114-fqs100387.
McCabe, D. P., Roediger, H. L. III., McDaniel, M. A., Balota, D. A., & Hambrick, D. Z. (2010). The relationship between working memory capacity and executive functioning: Evidence for a common executive attention construct. Neuropsychology, 24(2), 222-243. https://doi.org/10.1037/a0017619
McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419-457. https://stanford.edu/~jlmcc/papers/McCMcNaughtonOReilly95.pdf
McClelland, J. L. (2011). Memory as a constructive process: The parallel distributed processing approach. In S. Nalbantian, P. M. Matthews & J. L. McClelland (Eds.), The memory process: Neuroscientific and humanistic perspectives (pp. 129-151). MIT Press; Cambridge, MA.
McCormick, J., McDowell, E., & Harris, A. (2009). Policies for peace of mind? Devolution and older age in the UK (Politics of Ageing Working Paper No 2). London: Institution for Public Policy Research.
McDonald, R. J., Devan, B. D., Hong, N. S. (2004). Multiple memory systems: The power of interactions. Neurobiology of Learning and Memory, 82, 333-346. https://doi.org/10.1016/j.nlm.2004.05.009
McDonald, R. J., & White, N. M. (1993). A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum. Behavioral Neuroscience, 107, 3–22. https://doi.org/10.1037/0735-7044.107.1.3
McPherson, G. E. (2005). From child to musician: Skill development during the beginning stages of learning an instrument. Psychology of Music, 33(1), 5-35. https://doi.org/10.1177/0305735605048012
McPherson, G. E., Osborne, G. M., Barrett, M. S., Davidson, J. W., & Faulkner, R. (2015). Motivation to study music in Australian schools: The impact of music learning, gender, and socio-economic status. Research Studies in Music Education, 37(2), 141-160. https://doi.org/10.1177/1321103X15600914
McPherson, G. E., and Hattie, J. (2022). High-Impact Teaching Mindframes. In G. E. McPherson (ed.), The Oxford Handbook of Music Performance, Volume 1. Oxford Academic. https://doi.org/10.1093/oxfordhb/9780190056285.013.8Meiran, N., Liefooghe, B., & De Houwer, J. (2017). Powerful instructions: Automaticity without practice. Current Directions in Psychological Science, 26(6), 509-514. https://doi.org/10.1177/0963721417711638
Mishra, J. (2010). Effects of structure and serial position on memory errors in musical performance. Psychology of Music, 38(4), 447-461. https://doi.org/10.1177/0305735609351919
Mizumori, S. J. Y., Yeshenko, O., Gill, K. M., & Davis, D. M. (2004). Parallel processing across neural systems: Implications for a multiple memory system hypothesis. Neurobiology of Learning and Memory, 82(2004), 278-298. https://doi.org/10.1016/j.nlm.2004.07.007
Mole, C., & Klein, C. (2010). Confirmation, refutation, and the evidence of fMRI. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 99-111). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Moore, J. (2011/2012). Methodological behaviorism from the standpoint of a radical behaviorist The Behavior Analyst, 36(2), 197-208. https://doi.org/10.1007/BF03392306
Morgan, K. K., Zeithamova, D., Luu, P., & Tucker, D. (2020). Spatiotemporal dynamics of multiple memory systems during category learning. Brain Sciences, 10, 224-254. https:// doi.org/10.3390/brainsci10040224
Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Association for Psychological Sciences, 22(11), 1425-1433. https://doi.org/10.1177/0956797611416999
Münte, T. F., Kohlmetz, C., Nager, W., & Altenmüller, E. (2001). Neuroperception Superior auditory spatial tuning in conductors. Nature (London), 409(6820), 580–580. https://doi.org/10.1038/35054668
Münte, T. F., Altenmüller, E., & Jäncke, L. (2002). The musician’s brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3, 473-478. https://doi.org/10.1038/nrn843
Murray, J. M., & Escola, G. S. (2020). Remembrance of things practiced: Fast and slow learning in cortical and subcortical pathways. Nature Communications. http://dx.doi.org/10.1038/s41467-020-19788-5
Musliu, A., Berisha, B., Musaj, A., Latifi, D., & Peci, D. (2017). The impact of music in memory. European Journal of Social Sciences Education and Research, 10(2), 222-227. https://doi.org/10.26417/ejser.v10i2.p222-227
Myers, R. E., & Sperry, R. W. (1962). Neural mechanisms in visual guidance of limb movement. Archives of Neurology, 7, 195-202. https://doi.org/10.1001/archneur.1962.04210030033005
Nadel, L. (1992). Multiple memory systems: What and why. Journal of Cognitive Neuroscience, 4(3), 179-189, http://doi.org/10.1162/jocn.1992.4.3.179
Naidich, T. P., Tang, C. Y., Ng, J. C., Delman, B. N. (2013). Surface Anatomy of the Cerebrum. In T. P. Naidich, M. Castillo, S. Cha, J. G. Smirniotopoulos (Eds.), Imaging of the Brain (pp. 127-153). W.B. Saunders. https://doi.org/10.1016/B978-1-4160-5009-4.50017-0.
Nowbakht, M. & Olive, T. (2021). The role of error type and working memory in written corrective feedback effectiveness on first-language self error-correction. Written Communication, 38(2), 278-310. https://doi.org/10.1177/0741088320986554
O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: New York; Clarendon Press; Oxford University Press.
Olivers, C. N. L., & Eimer, M. (2010). On the difference between working memory and attentional set. Neuropsychologia, 49(2011), 1553-1558. https://doi.org/10.1016/j.neuropychologia.2010.11.033
Olton, D., Becker, J., & Handelmann, G. (1979). Hippocampus, space, and memory. Behavioral and Brain Sciences, 2(3), 313-322. https://doi.org/10.1017/S0140525X00062713
Ophir, E., Nass, C., Wagner, A. D., & Posner, M. I. (2009). Cognitive Control in Media Multitaskers. Proceedings of the National Academy of Sciences - PNAS, 106(37), 15583–15587. https://doi.org/10.1073/pnas.0903620106
Palmer. C., & Meyer, R. K. (2000). Conceptual and motor learning in performance. Psychological Science, 11(1), 63-68. https://doi.org/10.1111/1467-9280.00216
Paromov, D., Moïn-Darbari, K., Cedras, A. M., Maheu, M., Bacon, B-A., & Champoux, F. (2024). Body representation drives auditory spatial perception. iScience, 27, 109196. https://doi.org/10.1016/ j.isci.2024.109196
Pascual-Leone, A., Cohen, L. G., Dang, N., Brasil-Neto, J. P., Cammarota, A., & Hallett, M. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. Journal of Neurophysiology, 74(3), 1037-1045. https://doi.org/10.1152/jn.1995.74.3.1037
Patel, A. D. (2012). The OPERA hypothesis: Assumptions and clarifications. Annals of the New York Academy of Sciences, 1252(2012), 179-184. https://doi.org/10.1111/j.1749-6632.2012.06426.x
Peretz, I. & Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56, 89-114. https://doi.org/ 10.1146/annurev.psych.56.091103.070225
Perry, D. W., Zatorre, R. J., Petrides, M., Alivisatos, B., Meyer, E., & Evans, A. C. (1999). Localization of cerebral activity during simple singing. NeuroReport, 10(18), 3979-3984. https://doi.org/10.1097/00001756-199912160-00046
Persson, R. (1996). Brilliant performers as teachers: A case study of commonsense teaching in a conservatoire setting. International Journal of Music Education, 28(1), 25-36. https://doi.org/10.1177/025576149602800103
Plancher, G., Gyselinck, V., Piolino, P. (2018). The integration of realistic episodic memories relies on different working memory processes: Evidence from virtual navigation. Frontiers in Psychology, 9, Article 47. https://doi/org/10.3389/fpsyg.2018.00047
Poldrack, R. A. (2010). Subtraction and beyond: The logic of experimental designs for neuroimaging. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 147-159). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Poldrack, R. A., & Mumford, J. A. (2010). On the proper role of nonindependent ROI analysis: A commentary on Vul and Kanwisher. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 93-96). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Poline, J-B., Thirion, B., Roche, A., & Meriaux, S. (2010). Intersubject variability in fMRI data: Causes, consequences, and related analysis strategies. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 173-191). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Powell S. K. (2016). Mindfulness, Multitasking, and You. Professional case management, 21(2), 61–62. https://doi.org/10.1097/NCM.0000000000000141
Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129-154. https://doi.org/10.1080/713752551
Rabi, R., & Minda, J. P. (2014). Rule-based category learning in children: the role of age and executive functioning. PloS one, 9(1), e85316. https://doi.org/10.1371/journal.pone.0085316
Ragert, P., Schmidt, A., Altenmüller, E., Dinse, H. R. (2004). Superior tactile performance and learning in professional pianists: Evidence for meta-plasticity in musicians. European Journal of Neuroscience, 19, 473-478. https://doi.org/10.1111/j.1460-9568.2003.03142.x
Rajaram, S. (2007). Attentional Requirements of Perceptual Implicit Memory. In J. S. Nairne (Ed.), The foundations of remembering: Essays in honor of Henry L. Roediger, III (pp. 209–224). Psychology Press.
Rammsayer, T., & Altenmüller, E. (2006). Temporal information processing in musicians and nonmusicians. Music Perception, 24(1), 37-47. https://ezproxy.bu.edu/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fscholarly-journals%2Ftemporal-information-processing-musicians%2Fdocview%2F222224743%2Fse-2%3Faccountid%3D9676
Rauschecker, J. P. (2013). Processing streams in auditory cortex. In Y. E. Cohen, A. N. Popper, & R. R. Fay (Eds.), Neural correlates of auditory cognition, (pp. 7-43). Springer.
Rauscher, F. H., Shaw, G. L., & Ky, C. N. (1993). Music and spatial task performance. Nature (London), 365(6447), 611–611. https://doi.org/10.1038/365611a0
Ray, J., & Hendricks, K. S. (2019). Collective efficacy belief, within-group agreement, and performance quality among instrumental chamber ensembles. Journal of Research in Music Education, 66(4), 449-464. https://doi.org/10.1177/0022429418805090
REDCap (2004). Research Electronic Data Capture (Version 13.8.1) [online computer software]. Vanderbilt University. https://www.redcapcloud.com
Regelski, T. (2002). On “Methodolatry” and music teaching as critical and reflective praxis. Philosophy of Music Education Review, 10(2), 102-123. https://www.jstor.org/stable/40327184
Renier, L. A., Anurova, I., De Volder, A. G., Carlson, S., Van Meter, J., Rauschecker, J. P. (2010). Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind. Neuron, 68(1), 138-148. https://doi.org/10.1016/j.neuron.2010.09.21
Renwick, J. M., & Reeve, J. (2018). Supporting motivation in music education. In G. E. McPherson & G. F. Welch (Eds.), Music and music education in people’s lives: An Oxford handbook of music education, (2nd ed., Vol. 1, pp. 206-224). Oxford University Press.
Repp, B. H., & Su, Y. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin & Review, 20, 403–452.
ResearchWare, Inc. (1988). HyperResearch (Version 4.5.5) [computer software]. http://www.researchware.com/products/hyperresearch.html
ResearchWare, Inc. (2002). HyperTranscribe(Version 2.0.0) [computer software]. http://www.researchware.com/products/hypertranscribe.html
Riley, M. R., & Constantinidis, C. (2016). Role of prefrontal persistent activity in working memory. Frontiers in Systems Neuroscience, 9, 181. https://doi.org/10.3389/fnsys.2015.00181
Rioult-Pedotti, M.S., Friedman, D., Hess, G., Donoghue, J.P. (1998). Strengthening of horizontal cortical connections following skill learning. Nature Neuroscience, 1(3), 230-234. https://doi.org/10.1038/678
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131-141. https://doi.org/10.1016/0926-6410(95)00038-0
Rovee-Collier, C. (1999). The roots of multiple memory systems. Proceedings of the American Philosophical Society, 143(2), 266-279. https://www.jstor.org/stable/3181937
Roman, I. R., Roman, A. S., Kim, J. C., Large, E. W. (2023). Hebbian learning with elasticity explains how the spontaneous motor tempo affects music performance synchronization. PLOS Computational Biology, 19(6), e1011154. https://doi.org/10.1371/journal.pcbi.1011154
Roskies, A. L. (2010). Neuroimaging and inferential distance: The perils of pictures. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 195-215). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Rubin, D.C., & Umanath, S. (2015). Event memory: A theory of memory for laboratory, autobiographical, and fictional events. Psychological Review, 122(1), 1–23. https://doi.org/10.1037/a0037907
Rubin-Rabson, G. (1941). Studies in the psychology of memorizing piano music. VI: A comparison of two forms of mental rehearsal and keyboard overlearning. Journal of Educational Psychology, 32(8), 593–602. https://doi.org/10.1037/h0058481
Rygvold, T. W., Hatlestad-Hall, C., Elvsåshagen, T., Moberget, T., & Andersson, S. (2022). Long term potentiation-like neural plasticity and performance-based memory function. Neurobiology of Learning and Memory, 196, 1-11. https://doi.org/10.1016/j.nlm.2022.107696.
Sala, G., & Gobet, F. (2017). Does far transfer exist? Negative evidence from chess, music and working memory training. Association for Psychological Science, 26(6), 515-520. https://doi.org/10.1177/0963721417712760
Sanes, J. (2000). Motor cortex rules for learning and memory. Current Biology, 10(13), R495-R497, https://doi.org/10.1016/S0960-9822(00)00557-1
Santo-Luiz, C. D. (2007, November 23-23). The learning of music as a means to improve mathematical skills. [Conference session]. International Symposium on Performance Science, Porto, Portugal. https://performancescience.org/isps2007/
Sarno, S., Beirán, M., Falcó-Roget, J., & Parga, N. (2022). Dopamine firing plays a duel role in coding reward prediction errors and signaling motivation in a working memory task. Proceedings of the National Avademy of Sciences (PNAS), 119(2), e211331119. https://doi.org/10.1073/pnas.2113311119
Sato, K., Kirino, E., & Tanaka, S. A Voxel-Based Morphometry Study of the Brain of University Students Majoring in Music and Nonmusic Disciplines. Behavioural Neurology, 2015, Article 274919, 1-9. https://doi.org/10.1155/2015/274919
Saxe, R., Brett, M., & Kanwisher, N. (2010). Divide and conquer: A defense of functional localizers. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 25-41). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Schack, T., Essig, K., Frank, C., & Koester, D. (2014). Mental representation and motor imagery training. Frontiers in Human Neuroscience, 8, 1-10. https://doi.org/10.3389/fnhum.2014.00328
Schack, T., & Mechsner, F. (2006). Representation of motor skills in human long-term memory. Neuroscience letters, 391(3), 77–81. https://doi.org/10.1016/j.neulet.2005.10.009
Schacter, D. L., Wagner, A. D., & Buckner, R. L. (2000). Memory systems of 1999. In E. Tulving & F. I. M. Craik (Eds.), Oxford handbook of memory (pp. 627–643). New York: Oxford University Press.
Scheich, H., & Brosch, M. (2013). Task-related activation of auditory cortex. In Y. E. Cohen et al. (Eds.), Neural Correlates of Auditory Cognition, Springer Handbook of Auditory Research 45, https://doi.org/10.1007/978-14614-2350-8_3
Schellenberg, E. G., Nakata, T., Hunter, P. G., & Tamoto, S. (2007). Exposure to music and cognitive performance: Tests of children and adults. Psychology of Music, 35(1), 5-19. https://doi.org/10.1177/0305735607068885
Schendan, H. E. (2012). Semantic memory. In V.S. Ramachandran (Ed.) Encyclopedia of Human Behavior (Second Edition), (pp.350-358). Academic Press. https://doi.org/10.1016/B978-0-12-375000-6.00315-3
Schlaug, G., and Bangert, M. (2008). Neural correlates of music learning and understanding. In W. Gruhn and F. Rauscher (Eds.), Neurosciences in Music Pedagogy (pp. 100-120). Nova Science Publishers, Inc.
Schlenker, P. (2017). Outline of music semantics. Music Perception: An Interdisciplinary Journal, 35(1), 3-37. https://doi.org/10.2307/26417377
Schmidt, M. (2017). Creating culturally responsive ensemble instruction: A beginning music educator’s story. Bulletin of the Council for Research in Music Education, No. 210-211 (Fall 2016/Winter 2017), 61-79. University of Illinois Press. https://www.jstor.org/stable/10.5406/bulcouresmusedu.210-211.0061
Schneider, P., Sluming, V., Roberts, N., Scherg, M., Goebel, R., Specht, H. J., et al. (2005). Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nature Neuroscience, 8(9), 1241-1247. https://doi.org/10.1038/nn1530
Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 1–66. https://doi.org/10.1037/0033-295X.84.1.1
Schulze, K., & Koelsch, S. (2012). Working memory for music. Annals of the New York Academy of Sciences: The Neurosciences and Music IV: Learning and Memory, 1252(1), 229-336. https://doi.org/10.1111/j.1749-6632.2011.06447.x
Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. 1957. The Journal of Neurology, Neurosurgery and Psychiatry, 20, 11-21.
Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their role in realization, response selection, and learning via feedback. Neuroscience & Biobehavior Reviews, 32(2), 265-278. https://doi.org/10.1016/j.neubiorev.2007.07.010
Servant, M., Cassey, P., Woodman, G. F., & Logan, G. D. (2018). Neural bases of automaticity. Journal of experimental psychology. Learning, memory, and cognition, 44(3), 440–464. https://doi.org/10.1037/xlm0000454
Sessle, B. J. (2016). The biological basis of a functional occlusion. Functional Occlusion in Restorative Dentistry and Prosthodontics, 2016, 3-22. https://doi.org/10.1016/B978-0-7234-3809-0.00001-2
Shahin, A., Bosnyak, D. J., Trainor, L. J., & Roberts, L. E. (2003). Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. Journal of Neuroscience, 23(13), 5545-5552. https://doi.org/10.1523/jneurosci.23-13-05545.2003
Shallice, T., & Warrington, E. K. (1970). Independent functioning of verbal memory stores: A neuropsychological study. Quarterly Journal of Experimental Psychology, 22(2), 261-273. https://doi.org/10.1080/00335557043000203
Sharples, A. P., & Turner, D. C. (2023). Skeletal muscle memory. American Physiological Society: Cell Physiology, 324, C1274-C1294. https://doi.org/10.1152/ajpcell.00099.2023
Sherry, D. F., & Schacter, D. L. (1987). The evolution of multiple memory systems. Psychological Review, 94(4), 439-454. https://doi.org/
10.1037/0033-295X.94.4.439
Sidnell, R. G. (1986). Motor learning in music education. Psychomusicology: A Journal of Research in Music Cognition, 6(1-2), 7–18. https://doi.org/10.1037/h0094198
Silverman, M. J. (2010). The effect of pitch, rhythm and familiarity on working memory and anxiety as measured by digit recall performance. Journal of Music Therapy, 47(1), 70-83. https://doi.org/10.1093/jsmt/47.1.70
Sleeter, C. E. (2017). Critical race theory and the whiteness of teacher education. Urban Education, 52(2), 155-169. Sage Publications. https://doi.org/10.1177/0042085916668957
Sloboda, J. (2004). Exploring the musical mind: Cognition, emotion, ability, function. Oxford Scholarship Online. https://doi.org/ 10.1093/acprof:oso/9780198530121.001.0001
Skinner, B. F. (1938). The behavior of organisms: An experimental analysis. Oxford: Appleton-Century.
Soto, F. A., Bassett, D. S., & Ashby, F. G. (2016). Dissociable changes in functional network topology underlie early category learning and development of automaticity. NeuroImage, 141, 220-241. http://dx.doi.org/10.1016/j.neuroimage.2016.07.032
Squire, L. R. (1994). Declarative and nondeclarative memory: Multiple brain systems supporting learning and memory. In D. L. Schacter, & E. Tulving (Eds.), Memory systems (pp. 203-231). Cambridge, Mass: MIT Press. Retrieved from: http://perso.ens-lyon.fr/jacques.jayez/Cours/Implicite/Declarative_and_Procedural_Memory_Squire1.pdf
Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171-177. https://doi.org/10.1016/j.nlm.2004.06.005
Squire, L. R., Stark, C. E. L., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306.
Squire, L. R., & Zola-Morgan, S. (1988). Memory: Brain systems and behavior. Trends in Neurosciences, 11(4), 170-175.
Stambaugh, L. A., & Dyson, B. E. (2016). A comparative content analysis of Music Educators journal and Philosophy of Music Education Review (1993-2012). Journal of Research in Music Education, 64(2), 238-254. https://doi.org/10.1177/00224929416646997
Suter, W. (2012). Qualitative data, analysis, and design. In Newton Suter, W. (Ed.), Introduction to educational research: A critical thinking approach (pp. 342-386). Sage Publications.
Suzuki Music Australia. (n.d.). https://www.suzukimusic.org.au/
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1016/0364-0213(88)90023-7
Sweller, J. (2011). Cognitive load theory. In J. P. Mestre & B. H. Ross (Eds.), Psychology of Learning and Motivation, Vol. 55 (pp. 37-76). Science Direct.
Temmerman, N. (1998). A survey of childhood music education programs in Australia. Early Childhood Education Journal, 26(1). 29-34. https://doi.org/10.1023/A:1022930708255
Tervaniemi, M., & Hugdahl, K. (2003). Lateralization of auditory-cortex functions. Brain Research Reviews, 43, 231-246. https://doi.org/10.1016/j.brainresrev.2003.08.004
Thomson, S. B. (2011). Sample size and grounded theory. Journal of Administration and Governance, 5(1), 45-52. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3037218
Tierney, A. T., Bergeson-Dana, T. R., & Pisoni, D. B. (2008). Effects of early musical experience on auditory sequence memory. Empirical musicology review: EMR, 3(4), 178-186. https://doi.org/10.18061/1811/35989
Tillmann, B., Bharucha, J., and Bigand, E. (2000). Implicit learning of tonality: a self-organized approach. Psychological Revew, 107, 885–913.
Tillmann, B., Peretz, I., & Samson, S. (2011). Neurocognitive approaches to memory in music: Music is memory. In S. Nalbantian, P. M. Matthews & J. L. McClelland (Eds.), The memory process: Neuroscientific and humanistic perspectives (pp. 377-394). MIT Press; Cambridge, MA.
Tirovolas, A. K., & Levitin, D. J. (2011). Music perception and cognition research from 1983 to 2010: A categorical and bibliometric analysis of empirical articles in music perception. Music Perception: An Interdisciplinary Journal, 29(1), 22-36. https://www.jstor.org/stable/10.1525/mp.2011.29.1.23
Torff, B., & Gardner, H. (1999). Conceptual and experiential cognition in music. Journal of Aesthetic Education, 33(4), 93-106. https://ezproxy.bu.edu/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fscholarly-journals%2Fconceptual-experiential-cognition-music%2Fdocview%2F220653288%2Fse-2%3Faccountid%3D9676
Toth, J. P. (1996). Conceptual automaticity in recognition memory: Levels-of-processing effects on familiarity. Canadian Journal of Experimental Psychology, 50(1), 123-38. https://ezproxy.bu.edu/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fscholarly-journals%2Fconceptual-automaticity-recognition-memory-levels%2Fdocview%2F200322662%2Fse-2%3Faccountid%3D9676
Tronsky, L.N. Strategy use, the development of automaticity, and working memory involvement in complex multiplication. Memory & Cognition, 33, 927–940 (2005). https://doi-org.ezproxy.bu.edu/10.3758/BF03193086
Tulving, E. (1972). Episodic and semantic memory. In E. Tulving and W. Donaldson (Eds.), Organization of memory. Academic Press.
Tulving, E. (1986). What kind of a hypothesis is the distinction between episodic and semantic memory? Journal of Experimental Psychology: Learning, Memory, and Cognition, 12(2), 307-311. https://doi.org/10.1037/0278-7393.12.2.307
Tulving, E., & Schacter, D. L. (1990). Priming and memory systems. Science, 247(4940), 301-306. https://doi.org/10.1126/science.2296719
Turatto, M., & Pascucci, D. (2016). Short-term and long-term plasticity in the visual-attention system: Evidence from habituation of attentional capture. Neurobiology of Learning and Memory, 130, 159-169. http://dx.doi.org/10.1016/j.nlm.2016.02.010
Turk-Browne, N. B., Yi, D. J., & Chun, M. M. (2006). Linking implicit and explicit memory: common encoding factors and shared representations. Neuron, 49(6), 917–927. https://doi.org/10.1016/j.neuron.2006.01.030
Turner, B. O., Crossley, M. J., Ashby, F. G. (2017). Hierarchical control of procedural and declarative category-learning systems. NeuroImage, 150, 150-161. http://dx.doi.org/10.1016/j.neuroimage.2017.02.039
UCI Media. (2013, Feb 8). F. Gregory Ashby - "The neurobiology of perceptual categorization: From learning to automaticity" [Video]. YouTube. https://www.youtube.com/watch?v=u_hj9GLajEw&ab_channel=UCIMedia
Urquhart, C. (2017). Grounded theory for qualitative research: A practical guide. Sage Research Methods. https://doi.org/10.4135/9781526402196
Vakil, E., Wasserman, A., & Tibon, R. (2018). Development of perceptual and conceptual memory in explicit and implicit memory systems. Journal of Applied Developmental Psychology, 57, 16-23. https://doi.org/10.1016/j.appdev.2018.04.003
Van Hedger, S. C., Heald, S. L. M., & Nusbaum, H. C. (2018). Long-term pitch memory for music recordings is related to auditory working memory precision. Quarterly Journal of Experimental Psychology, 71(4), 879-891. https://doi.org/10.1080/17470218.2017.1307427
Varoqueaux, F., & Brose, N. (2002). Synaptogenesis. In V.S. Ramachandran (Ed.), Encyclopedia of the Human Brain (Vol. 4) (pp. 531-544). Academic Press. https://doi.org/10.1016/B0-12-227210-2/00341-1.
Vul, E., & Kanwisher, N. (2010). Begging the question: The nonindependence error in fMRI data analysis. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 71-91). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Vul, E., Kanwisher, N. (2010). On the advantages of not having to rely on multiple comparison corrections. In S. J. Hanson, & M. Bunzl (Eds.), Foundational Issues in Human Brain Mapping (pp. 97-98). MIT Press. https://doi-org.ezproxy.bu.edu/10.7551/mitpress/9780262014021.001.0001
Vuust, P., Pallesen, K. J., Bailey, C., van Zuijen, T. L., Gjedde, A., Roepstorff, A., et al. (2005). To musicians, the message is in the meter pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. Neuroimage, 24(2), 560-564. https://doi.org/10.1016/j.neuroimage.2004.08.039
Waldron, & Ashby, F. (2001). The effects of concurrent task interference on category learning: Evidence for multiple category learning systems. Psychonomic Bulletin & Review, 8(1), 168–176. https://doi.org/10.3758/BF03196154
Walker, D., & Myrick, F. (2006). Grounded Theory: An exploration of process and procedure. Qualitative Health Research,16(4), 547-559. https://doi.org/10.1177/1049732305285972
Walton, D. (2004). Abductive reasoning. University of Alabama Press. https://doi.org/10.22329/il.v24i3.2150
Warrier, C. M., & Zatorre, R. J. (2004). Right temporal cortex is critical for utilization of melodic contextual cues in a pitch constancy task. Brain, 127(Pt 7), 1616-1625. https://doi.org/10.1093/brain/awh183
Warrington. E. K., & Weiskrantz, L. (1982). Amnesia: A disconnection syndrome? Neuropsychologia, 20(3), 233–248. https://doi.org/10.1016/0028-3932(82)90099-9
Watson, A. (2010). Musicians as instrumental music teachers: Issues from an Australian perspective. International Journal of Music Education, 28(2), 193-203. https://doi.org/10.1177/0255761410362939
Watson, J. B. (1913). Psychology as the behaviorist view it. Psychological Review, 20, 158-177.
Weiskrantz, L. (1990). Problems of learning and memory: One or multiple memory systems? Philosophical Transactions: Biological Sciences, 329(1253), 99-108. https://www.jstor.org/stable/76867
Welch, G. F., Howard, D. M., Himonides, E., & Brereton, J. (2005). Real-time feedback in the singing studio: An innovatory action-research project using new voice technology. Music Education Research, 7(2), 225-249. https://doi.org/10.1080/14613800500169779
Welch, G. F., Ockelford, A., Carter, F-C., Zimmerman, S-A., & Himonides, E. (2009). ‘Sounds of intent’: Mapping musical behaviour and development in children and young people with complex needs. Psychology of Music, 37(3), 348-370. https://10.1177/030573608099688
Wendt, M., Strobach T., & Janczyk, M. (2018). Multitasking: Executive functioning in dual-task and task switching situations. Frontiers Media SA. https://doi.org/ 10.3389/978-2-88945-453-2
White, N. M. (2007). Multiple parallel memory systems. Scholarpedia, 2(7). https://doi.org/10.4229/scholarpedia.2663
White, N. M., & McDonald, R. J. (2002). Multiple parallel memory systems in the brain of the rat. Neurobiology of Learning and Memory, 77(2), 125-184.
Wieth, & Burns, B. D. (2014). Rewarding Multitasking: Negative Effects of an Incentive on Problem Solving under Divided Attention. The Journal of Problem Solving, 7(1). https://doi.org/10.7771/1932-6246.1163
Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25, 68-81. https://doi.org/10.1006/ceps.1999.1015
Wilkins, N. J., & Rawson, K. A. (2011). Controlling retrieval during practice: Implications for memory-based theories of automaticity. Journal of Memory and Language, 65(2011), 208-211. https://doi.org/ 10.1016/j.jml.2011.03.006
Wilkins, N. J., & Rawson, K. A. (2013). Why does lag affect the durability of memory-based automaticity? Loss of memory strength or interference? Acta Psychologica, 114, 390-396. http://dx.doi.org/10.1016/j.actpsy.2013.07.021
Wilson, F. R. (1986). Tone deaf & all thumbs? An invitation to music-making for late bloomers and non-prodigies. Vintage Books.
Wilson, S. J., & Saling, M. M. (2008). Contributions of the right and left mesial temporal lobes to music memory: Evidence from melodic learning difficulties. Music Perception: An Interdisciplinary Journal, 25(4), 303-314. https://doi.org/10.1525/mp.2008.25.4.303
Wimsatt, M., & Simpson, J. (2017). 3D Brain [Online software]. Society for Neuroscience. https://www.brainfacts.org/
Wise, K., & Sloboda, J.A. (2008). Establishing an empirical profile of self-defined "tone deafness": Perception, singing performance and self-assessment. Musicae Scientiae, 12(1), 3-26. https://doi.org/10.1177/102986490801200102
Yamaha Music Australia. (n.d.). https://au.yamaha.com/index.html
Yeşil, B., & Ünal, S. (2017). An investigation on the effects of music training on attention and working memory in adults. Anatolian Journal of Psychiatry, 18(6), 531-535. https://doi.org/10.5455/apd.259201
Yost, W. A. (2008). Perceiving sound sources. In W. A. Yost, A. N Popper, and R. R. Fay (Eds.), Springer Handbook of Auditory Research (pp. 77-115), Springer.
Yu, J. J., & Young, E. D. (2000). Linear and nonlinear pathways of spectral information transmission in the cochlear nucleus. Proceedings of the National Academy of Sciences of the USA, 97(22), 11780–11786.
Yurgil, K. A., Velasquez, M. A., Winston, J. L., Reichman, N. B., & Colombo, P. J. (2020). Music training, working memory and neural oscillations: A review. Frontiers in Psychology, 11, 1-17. https://doi.org/10.3389/fpsyh.2020.00266
Zamudio, M., Russell, C., Rios, F., & Bridgeman, J. L. (2010). Critical race theory matters: Education and ideology. Routledge. https://doi.org/10.4324/9780203842713
Zatorre, R. J., Perry, D. W., Beckett, C. A., Westbury, C. F., & Evans, A. C. (1998). Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proceedings of the National Academy of Sciences USA, 95, 3172-3177. https://doi.org/ 10.1073/pnas.95.6.3172
Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547-558. https://link-gale-com.ezproxy.bu.edu/apps/doc/A182013101/AONE?u=mlin_b_bumml&sid=bookmark-AONE&xid=a969ebeb
Zhang, L., Qiao, L., Chen, Q., Yang, W., Xu, M., Yao, X., Qiu, J., Yang, D. (2016). Gray matter volume of the lingual gyrus mediates the relationship between inhibition function and divergent thinking. Frontiers in Psychology: Cognition, 7(1532), 1-10. https://doi.org/10.3389/fpsyg.2016.01532
Zilli E. A., & Hasselmo, M. E. (2008a). Modeling the role of working memory and episodic memory in behavioral tasks. Hippocampus, 18(2), 193-209. https://doi.org/10.1002/hipo.20382
Zilli E. A., & Hasselmo, M. E. (2008b). The influence of Markov decision process structure on the possible strategic use of working memory and episodic memory. PLoSONE, 3(7), e2756. https://doi.org/10.1371/journal.pone.0002756
Zimmerman, E., & Lahav, A. (2012). The multisensory brain and its ability to learn music. Annals of the New York Academy of Sciences, 1252(2012), 179-184. https://doi.org/10.1111/j.1749-6632.2012.06455.x
Zola-Morgan, S., Squire, L. R., & Mishkin, M. (1982). The neuroanatomy of amnesia: amygdala-hippocampus versus temporal stem. Science, 218(4579), 1337-1339. https://doi.org/10.1126/science.6890713